Matlab Program For Bpsk Digital Communication Lab

Offers concise, practical knowledge on modern communication systems to help students transition smoothly into the workplace and beyond. This book presents the most relevant concepts and technologies of today's communication systems and presents them in a concise and intuitive manner. It covers advanced topics such as Orthogonal Frequency-Division Multiplexing (OFDM) and Multiple-Input Multiple-Output (MIMO) Technology, which are enabling technologies for modern communication systems such as WiFi (including the latest enhancements) and LTE-Advanced. Following a brief introduction to the field, Digital Communication for Practicing Engineers immerses readers in the theories and technologies that engineers deal with. It starts off with Shannon Theorem and Information Theory, before moving on to basic modules of a communication system, including modulation, statistical detection, channel coding, synchronization, and equalization. The next part of the book discusses advanced topics such as OFDM and MIMO, and introduces several emerging technologies in the context of 5G cellular system radio interface. The book closes by outlining several current research areas in digital communications. In addition, this text: Breaks down the subject into self-contained lectures, which can be read individually or as a whole; Focuses on the pros and cons of widely used techniques, while providing references for detailed mathematical analysis; Follows the current technology trends, including advanced topics such as OFDM and MIMO; Touches on content this is not usually contained in textbooks such as cyclo-stationary symbol timing recovery, adaptive self-interference canceler, and Tomlinson-Harashima precoder; Includes many illustrations, homework problems, and examples; Digital Communication for Practicing Engineers is an ideal guide for graduate students and professionals in digital communication looking to understand, work with, and adapt to the current and future technology.

The purpose of this book is first to study MATLAB programming concepts, then the basic concepts of modeling and simulation analysis, particularly focus on digital communication simulation. The book will cover the topics practically to describe network routing simulation using MATLAB tool. It will cover the dimensions' like Wireless network and WSN simulation using MATLAB, then depict the modeling and simulation of vehicles power network in detail along with considering different case studies. Key features of the book include: Discusses different basics and advanced methodology with their fundamental concepts of exploration and exploitation in NETWORK SIMULATION. Elaborates practice questions and simulations in MATLAB Student-friendly and Concise Useful for UG and PG level research scholar Aimed at Practical approach for network simulation with more programs with step by step comments. Based on the Latest technologies, coverage of wireless simulation and WSN concepts and implementations.
techniques. The typical chapter begins with some theoretical material followed by working examples and experiments using the TMS320C6713-based DSP Starter Kit (DSK). The C6713 DSK is TI’s new signal processor based on the C6x processor (replacing the C6711 DSK).

From personal music players to anti-lock brakes and advanced digital flight controllers, the demand for real-time digital signal processing (DSP) continues to grow. Mastering real-time DSP is one of the most challenging and time-consuming pursuits in the field, exacerbated by the lack of a resource that solidly bridges the gap between theory and practice.

Recognizing that there is a better way forward, accomplished experts Welch, Wright, and Morrow offer Real-Time Digital Signal Processing from MATLAB to C with the TMS320C6x DSK. This book collects all of the necessary tools in a single, field-tested source of unrivaled authority. The authors seamlessly integrate theory with easy-to-use, inexpensive hardware and software tools in an approachable and hands-on manner. Using abundant examples and exercises in a step-by-step approach, they work from familiar interfaces such as MATLAB® to running algorithms in real-time on industry-standard DSP hardware. For each concept, the book uses a four-step methodology: a brief review of relevant theory; demonstration of the concept in winDSK6, an easy-to-use software tool; explanation and demonstration of MATLAB techniques for implementation; and explanation of the necessary C code to implement the algorithms in real time. Covering a broad spectrum of topics in a hands-on, concise, and approachable way, Real-Time Digital Signal Processing from MATLAB to C with the TMS320C6x DSK paves the way toward mastery of real-time DSP. Essential source code is available for download.

An unparalleled learning tool and guide to error correction coding. Error correction coding techniques allow the detection and correction of errors occurring during the transmission of data in digital communication systems. These techniques are nearly universally employed in modern communication systems, and are thus an important component of the modern information economy. Error Correction Coding: Mathematical Methods and Algorithms provides a comprehensive introduction to both the theoretical and practical aspects of error correction coding, with a presentation suitable for a wide variety of audiences, including graduate students in electrical engineering, mathematics, or computer science. The pedagogy is arranged so that the mathematical concepts are presented incrementally, followed immediately by applications to coding. A large number of exercises expand and deepen students' understanding. A unique feature of the book is a set of programming laboratories, supplemented with over 250 programs and functions on an associated Web site, which provides hands-on experience and a better understanding of the material. These laboratories lead students through the implementation and evaluation of Hamming codes, CRC codes, BCH and R-S codes, convolutional codes, turbo codes, and LDPC codes. This text offers both "classical" coding theory-such as Hamming, BCH, Reed-Solomon, Reed-Muller, and convolutional codes-as well as modern codes and decoding methods, including turbo codes, LDPC codes, repeat-accumulate codes, space time codes, factor graphs, soft-decision decoding, Guruswami-Sudan decoding, EXIT charts, and iterative decoding. Theoretical complements on performance and bounds are presented. Coding is also put into its communications and information theoretic context and connections are drawn to public key cryptosystems. Ideal as a classroom resource and a professional reference, this thorough guide will benefit electrical and computer engineers, mathematicians, students, researchers, and scientists.

The Phase-Locked Loop (PLL), and many of the devices used for frequency and phase tracking, carrier and symbol synchronization, demodulation, and frequency synthesis, are fundamental building blocks in today's complex communications systems. It is therefore essential for both students and practicing communications engineers interested in the design and implementation of modern communication systems to understand and have insight into the behavior of these important and ubiquitous devices. Since the PLL behaves as a nonlinear device (at least during acquisition), computer simulation can be used to great advantage in gaining insight into the behavior of the PLL and the devices derived from the PLL. The purpose of this Synthesis Lecture is to provide basic theoretical analyses of the PLL and devices derived from the PLL and simulation models suitable for supplementing undergraduate and graduate courses in communications. The Synthesis Lecture is also suitable for self study by practicing engineers. A significant component of this book is a set of basic MATLAB-based simulations that illustrate the operating characteristics of PLL-based devices and enable the reader to investigate the impact of varying system parameters. Rather than providing a comprehensive treatment of the underlying theory of phase-locked loops, theoretical analyses are provided in sufficient detail in order to explain how simulations are developed. The references point to sources currently available that treat this subject in considerable technical depth and are suitable for additional study. Download MATLAB codes (.zip) Table of Contents: Introduction / Basic PLL Theory / Structures Developed From The Basic PLL / Simulation Models / MATLAB Simulations / Noise Performance Analysis

This book presents selected papers from 1st International Conference on Optical and Wireless Technologies, providing insights into the analytical, experimental, and developmental aspects of systems, techniques, and devices in these spheres. It explores the combined use of various optical and wireless technologies in next-generation networking applications, and discusses the latest developments in applications such as photonics, high-speed communication systems and networks, visible light communication, nanophotonics, and wireless and multiple-input–multiple-output (MIMO) systems. The book will serve as a valuable reference resource for academics and researchers across the globe. This book explains the basic principles of satellite navigation technology with the bare minimum of mathematics and without complex equations. It helps you to conceptualize the underlying theory from first principles, building up your knowledge gradually using practical demonstrations and worked examples. A full range of MATLAB simulations is used to visualize concepts and solve problems, allowing you to see what happens to signals and systems with different configurations. Implementation and applications are discussed, along with some special topics such as Kalman Filter and Ionosphere. With this book you will learn: How a satellite navigation system works How to improve your efficiency when
working with a satellite navigation system How to use MATLAB for simulation, helping to visualize concepts Various possible implementation approaches for the technology The most significant applications of satellite navigation systems Teaches the fundamentals of satellite navigation systems, using MATLAB as a visualization and problem solving tool Worked out numerous problems are provided to aid practical understanding On-line support provides MATLAB scripts for simulation exercises and MATLAB based solutions, standard algorithms, and PowerPoint slides This book serves as an easily accessible reference for wireless digital communication systems. Topics are presented with simple but non-trivial examples and then elaborated with their variations and sophistications. It includes numerous examples and exercises to illustrate key points. The book emphasizes both practical problem solving and a thorough understanding of fundamentals, aiming to realize the complementary relationship between practice and theory. Though the author emphasize wireless radio channels, the fundamentals that are covered are useful to different channels - digital subscriber line, coax, power lines, optical fibers, and even Gigabit serial interconnection. This book is the outgrowth of the author’s hands-on experience in the telecommunication systems industry as a research and development engineer. It is written primarily for practitioners of wireless digital communication systems – engineers and technical leaders and managers – and for digital communication systems in general including new comers like graduate students and upper-division undergraduate students. The material in chapters 5(OFDM), 6(Channel coding), 7(Synchronization) and 8(Transceivers) contains something new, not explicitly available in typical textbooks, and useful in practice. For example, in Chapter 5, all known orthogonal frequency division multiplex signals are formulated based on pulse shape and thus flexible, e.g., unlike currently predominant symbol block transmission, it can be serial transmission. In Chapter 6, we emphasize practical applications of powerful error coding such as LDPC to higher order modulations, fading, and non-linearity problem. In Chapter 7, new digital timing detectors are suggested for small access bandwidth shaping pulse, and a digital quadrature imbalance correction is also included along with digital carrier phase recovery. In Chapter 8, low IF digital image cancelling transceiver is treated in detail so that practical implementation can be readily done with advantages.

From the Foreword: "...There are many good textbooks today to teach digital signal processing, but most of them are content to teach the theory, and perhaps some MATLAB® simulations. This book has taken a bold step forward. It not only presents the theory, it reinforces it with simulations, and then it shows us how to actually use the results in real-time applications. This last step is not a trivial step, and that is why so many books, and courses, present only theory and simulations. With the combined expertise of the three authors of this text...the reader can step into the real-time world of applications with a text that presents an accessible path..." —Delores M. Etter, Texas Instruments Distinguished Chair in Electrical Engineering and Executive Director, Caruth Institute for Engineering Education, Southern Methodist University, Dallas, Texas, USA Mastering practical application of real-time digital signal processing (DSP) remains one of the most challenging and time-consuming pursuits in the field. It is even more difficult without a resource to bridge the gap between theory and practice. Filling that void, Real-Time Digital Signal Processing from MATLAB® to C with the TMS320C6x DSPs, Second Edition is organized in three sections that cover enduring fundamentals and present practical projects and invaluable appendices. This updated edition gives readers hands-on experience in real-time DSP using a practical, step-by-step framework that also incorporates demonstrations, exercises, and problems, coupled with brief overviews of applicable theory and MATLAB® application. Engineers, educators, and students rely on this book for precise, simplified instruction on use of real-time DSP applications. The book’s software supports the latest high-performance hardware, including the powerful, inexpensive, and versatile OMAP-L138 Experimenter Kit and other development boards. Incorporating readers’ valuable feedback and suggestions, this installment covers additional topics (such as PN sequences) and more advanced real-time DSP projects (including higher-order digital communications projects), making it even more valuable as a learning tool.

This book constitutes the refereed proceedings of the First International Conference on Advanced Hybrid Information Processing, ADHIB 2017, held in Harbin, China, in July 2017. The 64 full papers were selected from 134 submissions and focus on advanced methods and applications for hybrid information processing.

An uncoded multimedia transmission (UMT) system is one that skips quantization and entropy coding in compression and all subsequent binary operations, including channel coding and bit-to-symbol mapping of modulation. By directly transmitting non-binary symbols with amplitude modulation, the uncoded system avoids the annoying cliff effect observed in the coded transmission system. This advantage makes uncoded transmission more suited to both unicast in varying channel conditions and multicast to heterogeneous users. Particularly, in the first part of Uncoded Multimedia Transmission, we consider how to improve the efficiency of uncoded transmission and make it on par with coded transmission. We then address issues and challenges regarding how to better utilize temporal and spatial correlation of images and video in the uncoded transmission, to achieve the optimal transmission performance. Next, we investigate the resource allocation problem for uncoded transmission, including subchannel, bandwidth and power allocation. By properly allocating these resources, uncoded transmission can achieve higher efficiency and more robust performance. Subsequently, we consider the image and video delivery in MIMO broadcasting networks with diverse channel quality and varying numbers of antennas across receivers. Finally, we investigate the cases where uncoded transmission can be used in conjunction with digital transmission for a balanced efficiency and adaptation capability. This book is the very first monograph in the general area of uncoded multimedia transmission written in a self-contained format. It addresses both the fundamentals and the applications of uncoded transmission. It gives a systematic introduction to the fundamental theory and concepts in this field, and at the same time, also presents specific applications that reveal the great potential and impacts for the technologies generated from the research in this field. By concentrating several important studies and developments currently taking place in the field of uncoded transmission in a single source, this book can reduce the time
and cost required to learn and improve skills and knowledge in the field. The authors have been actively working in this field for years, and this book is the final essence of their years of long research in this field. The book may be used as a collection of research notes for researchers in this field, a reference book for practitioners or engineers, as well as a textbook for a graduate advanced seminar in this field or any related fields. The references collected in this book may be used as further reading lists or references for the readers.

Now in a new edition—the most comprehensive, hands-on introduction to digital signal processing The first edition of Digital Signal Processing and Applications with the TMS320C6713 and TMS320C6416 DSK is widely accepted as the most extensive text available on the hands-on teaching of Digital Signal Processing (DSP). Now, it has been fully updated in this valuable Second Edition to be compatible with the latest version (3.1) of Texas Instruments Code Composer Studio (CCS) development environment. Maintaining the original's comprehensive, hands-on approach that has made it an instructor's favorite, this new edition also features: Added program examples that illustrate DSP concepts in real-time and in the laboratory. Expanded coverage of analog input and output. New material on frame-based processing. A revised chapter on IIR, which includes a number of floating-point example programs that explore IIR filters more comprehensively. More extensive coverage of DSP/BIOS All programs listed in the text—plus additional applications—which are available on a companion CD-ROM. No other book provides such an extensive or comprehensive set of program examples to aid instructors in teaching DSP in a laboratory using audio frequency signals—making this an ideal text for DSP courses at the senior undergraduate and postgraduate levels. It also serves as a valuable resource for researchers, DSP developers, business managers, and technology solution providers who are looking for an overview and examples of DSP algorithms implemented using the TMS320C6713 and TMS320C6416 DSK.

There have been considerable developments in information and communication technology. This has led to an increase in the number of applications available, as well as an increase in their variability. As such, it has become important to understand and master problems related to establishing radio links, the layout and flow of source data, the power available from antennas, the selectivity and sensitivity of receivers, etc. This book discusses digital modulations, their extensions and environment, as well as a few basic mathematical tools. An understanding of degree level mathematics or its equivalent is a prerequisite to reading this book. Digital Communication Techniques is aimed at licensed professionals, engineers, Master's students and researchers whose field is in related areas such as hardware, phase-locked loops, voltage-controlled oscillators or phase noise.

This book brings together 106 papers presented at the Joint Conferences of 2015 International Conference on Computer Science and Engineering Technology (CSET2015) and 2015 International Conference on Medical Science and Biological Engineering (MSBE2015), which were held in Hong Kong on 30–31 May 2015. The joint conferences covered a wide range of research topics in new emerging technologies, ranging from computing to biomedical engineering. During the conferences, industry professionals, scholars and government agencies around the world gathered to share their latest research results and discuss the practical challenges they encountered. Their research articles were reviewed and selected by a panel of experts before being compiled into this proceedings. Combining research findings and industry applications, this proceedings should be a useful reference for researchers and engineers working in computing and biomedical science. Contents: Mechanical and Control Engineering; Computer Science and Its Application; Medical Science and Biological Engineering; Technology for Education; Building Material and Civil Engineering; Material Science and Engineering; Readership: Researchers interested in computer science and biomedical science, as well as graduate students working on related technologies. Keywords: Computer Engineering; Mechanical Engineering; Medical Science; Computer Aided Instruction

This book explore the use of new technologies in the area of satellite navigation receivers. In order to construct a reconfigurable receiver with a wide range of applications, the authors discuss receiver architecture based on software-defined radio techniques. The presentation unfolds in a user-friendly style and goes from the basics to cutting-edge research. The book is aimed at applied mathematicians, electrical engineers, geodesists, and graduate students. It may be used as a textbook in various GPS technology and signal processing courses, or as a self-study reference for anyone working with satellite navigation receivers.

This updated edition gives readers hands-on experience in real-time DSP using a practical, step-by-step framework that also incorporates demonstrations, exercises, and problems, coupled with brief overviews of applicable theory and MATLAB applications. Organized in three sections that cover enduring fundamentals and present practical projects and invaluable appendices, this new edition provides support for the most recent and powerful of the inexpensive DSP development boards currently available from Texas Instruments: the OMAP-L138 LCDK. It includes two new real-time DSP projects, as well as three new appendices: an introduction to the Code Generation tools available with MATLAB, a guide on how to turn the LCDK into a portable battery-operated device, and a comparison of the three DSP boards directly supported by this edition.

This book describes wireless communication systems and concepts from modeling, simulation, testing, and wireless systems analyzing (along with wireless circuits) using modern instrumentation and computer assisted design software. Readers learn how to model, simulate, test, and analyze wireless systems (along with wireless circuits) using modern instrumentation and computer aided design software. The book is structured in such a way that it can be used in support of various wireless courses at all levels and can serve as a reference for research projects for both undergraduate and graduate students. This book complements traditional theoretical textbooks by also introducing some practical aspects. This paperback is a color edition. Link to the black & white edition: https://www.amazon.com/gp/product/152149388X

Digital Modulations using Matlab is a learner-friendly, practical and example driven book, that gives you a solid background in building simulation models for digital modulation systems in Matlab. This book, an essential guide for
understanding the implementation aspects of a digital modulation system, shows how to simulate and model a digital modulation system from scratch. The implemented simulation models shown in this book, mostly will not use any of the inbuilt communication toolbox functions and hence provide an opportunity for an engineer to understand the basic implementation aspects of modeling various building blocks of a digital modulation system. It presents the following key topics with required theoretical background along with the implementation details in the form of Matlab scripts. * Basics of signal processing essential for implementing digital modulation techniques - generation of test signals, interpreting FFT results, power and energy of a signal, methods to compute convolution, analytic signal and applications. * Waveform and complex equivalent baseband simulation models. * Digital modulation techniques covered: BPSK and its variants, QPSK and its variants, M-ary PSK, M-ary QAM, M-ary PAM, CPM, MSK, GMSK, M-ary FSK. * Monte Carlo simulation for ascertaining performance of digital modulation techniques in AWGN and fading channels - Eb/N0 Vs BER curves. * Design and implementation of linear equalizers - zero forcing and MMSE equalizers, using them in a communication link. * Simulation and performance of modulation systems with receiver impairments. This systematically designed laboratory manual elucidates a number of techniques which help the students carry out various experiments in the field of digital signal processing, digital image processing, digital signal processor and digital communication through MATLAB® in a single volume. A step-wise discussion of the programming procedure using MATLAB® has been carried out in this book. The numerous programming examples for each digital signal processing lab, image processing lab, signal processor lab and digital communication lab have also been included. The book begins with an introductory chapter on MATLAB®, which will be very useful for a beginner. The concepts are explained with the aid of screenshots. Then it moves on to discuss the fundamental aspects in digital signal processing through MATLAB®, with a special emphasis given to the design of digital filters (FIR and IIR). Finally digital communication and image processing sections in the book help readers to understand the commonly used MATLAB® functions. At the end of this book, some basic experiments using DSP trainer kit have also been included. Audience This book is intended for the undergraduate students of electronics and communication engineering, electronics and instrumentation engineering, and instrumentation and control engineering for their laboratory courses in digital signal processing, image processing and digital communication. Key Features • Includes about 115 different experiments. • Contains several figures to reinforce the understanding of the techniques discussed. • Gives systematic way of doing experiments such as Aim, Theory, Programs, Sample inputs and outputs, Viva voce questions and Examination questions. The choice of digital modulation scheme significantly affects the characteristics and resulting physical realization of communication system. This work describes the Concepts, and simulations to Methods of hardware implementations of all the main digital modulation schemes used such as ASK, FSK, BPSK, QPSK and OFDM. This work compares the performance and tradeoffs of popular digital modulation systems. The work presents combination of high-level modeling environments and automatic code generation with hardware/software co-design. It elaborates the simulation to synthesis of digital modulation schemes using the MATLAB(r) Simulink program and its implementation in a XILINX's Spartan-III kit using system generator. The specific digital design from analysis over creating the simulation model to mapping the modulator to the FPGA is discussed. Test benches created for both traditional and block diagram oriented Simulink system generator combination approaches. The results indicate that synthesis on FPGA hardware can be generated automatically reducing the design time from days to minutes. The digital modulation schemes are simulated and synthesized by both traditional and method described in the book. Based on the popular Artech House classic, Digital Communication Systems Engineering with Software-Defined Radio, this book provides a practical approach to quickly learning the software-defined radio (SDR) concepts needed for work in the field. This up-to-date volume guides readers on how to quickly prototype wireless designs using SDR for real-world testing and experimentation. This book explores advanced wireless communication techniques such as OFDM, LTE, WLA, and hardware targeting. Readers will gain an understanding of the core concepts behind wireless hardware, such as the radio frequency front-end, analog-to-digital and digital-to-analog converters, as well as various processing technologies. Moreover, this volume includes chapters on timing estimation, matched filtering, frame synchronization message decoding, and source coding. The orthogonal frequency division multiplexing is explained and details about HDL code generation and deployment are provided. The book concludes with coverage of the WLAN toolbox with OFDM beacon reception and the LTE toolbox with downlink reception. Multiple case studies are provided throughout the book. Both MATLAB and Simulink source code are included to assist readers with their projects in the field. Over the past decade, tremendous development of wireless communications has changed human life and engineering. Considerable advancement has been made in design and architecture of related RF and microwave circuits. Introduction to Wireless Communication Circuits focuses on special circuits dedicated to the RF level of wireless communications. From oscillators to modulation and demodulation, and from mixers to RF and power amplifier circuits, all are presented in a sequential manner. A wealth of analytical relations is provided in the text alongside various worked out examples. Related problem sets are given at the end of each chapter. Basic concepts of RF Analog Circuit Design are developed in the book. Technical topics discussed include: - Wireless Communication System - RF Oscillators and Phase Locked Loops - Modulator and Demodulator Circuits - RF Mixers - Automatic Gain Control and Limiters - Microwave Circuits, Transmission Lines and S-Parameters - Matching Networks - Linear Amplifier Design and Power Amplifiers - Linearization Techniques This textbook is intended for advanced undergraduate and graduate students, as well as RF Engineers and professionals. This hands-on, laboratory driven textbook helps readers understand principles of digital signal processing (DSP) and basics of software-based digital communication, particularly software-defined networks (SDN) and software-defined radio (SDR). In the book only the most important concepts are presented. Each book chapter is an introduction to computer laboratory and is accompanied by complete laboratory exercises and ready-to-go Matlab programs with figures and comments (available at the book webpage and running also in GNU Octave 5.2 with free software packages), showing all or most details of relevant algorithms. Students are tasked to understand programs, modify them, and apply presented concepts to recorded real signal or simulated received signals, with modelled transmission condition and hardware imperfections. Teaching is done by showing examples and their modifications to different real-world telecommunication-like applications. The book consists of three parts: introduction to DSP (spectral analysis and digital filtering), introduction to DSP advanced topics (multi-rate, adaptive, model-based and multimedia - speech, audio, video - signal analysis and processing) and introduction to software-defined modern
telecommunication systems (SDR technology, analog and digital modulations, single- and multi-carrier systems, channel estimation and correction as well as synchronization issues). Many real signals are processed in the book, in the first part - mainly speech and audio, while in the second part - mainly RF recordings taken from RTL-SDR USB stick and ADALM-PLUTO module, for example captured IQ data of VOR avionics signal, classical FM radio with RDS, digital DAB/DAB+ radio and 4G-LTE digital telephony. Additionally, modelling and simulation of some transmission scenarios are tested in software in the book, in particular TETRA, ADSL and 5G signals. Provides an introduction to digital signal processing and software-based digital communication; Presents a transition from digital signal processing to software-defined telecommunication; Features a suite of pedagogical materials including a laboratory test-bed and computer exercises/experiments.

This book discusses the latest channel coding techniques, MIMO systems, and 5G channel coding evolution. It provides a comprehensive overview of channel coding, covering modern techniques such as turbo codes, low-density parity-check (LDPC) codes, space–time coding, polar codes, LT codes, and Raptor codes as well as the traditional codes such as cyclic codes, BCH, RS codes, and convolutional codes. It also explores MIMO communications, which is an effective method for high-speed or high-reliability wireless communications. It also examines the evolution of 5G channel coding techniques. Each of the 13 chapters features numerous illustrative examples for easy understanding of the coding techniques, and MATLAB-based programs are integrated in the text to enhance readers’ grasp of the underlying theories. Further, PC-based MATLAB m-files for illustrative examples are included for students and researchers involved in advanced and current concepts of coding theory.

The purpose of this book is first to study MATLAB programming concepts, then the basic concepts of modeling and simulation analysis, particularly focus on digital communication simulation. The book will cover the topics practically to describe network routing simulation using MATLAB tool. It will cover the dimensions’ like Wireless network and WSN simulation using MATLAB, then depict the modeling and simulation of vehicles power network in detail along with considering different case studies. Key features of the book include: Discusses different basics and advanced methodology with their fundamental concepts of exploration and exploitation in NETWORK SIMULATION. Elaborates practice questions and simulations in MATLAB Student-friendly and Concise Useful for UG and PG level research scholar Aimed at Practical approach for network simulation with more programs with step by step comments. Based on the Latest technologies, coverage of wireless simulation and WSN concepts and implementations.

The book discusses modern channel coding techniques for wireless communications such as turbo codes, low parity check codes (LDPC), space-time coding, Reed Solomon (RS) codes and convolutional codes. Many illustrative examples are included in each chapter for easy understanding of the coding techniques. The text is integrated with MATLAB-based programs to enhance the understanding of the subject’s underlying theories. It includes current topics of increasing importance such as turbo codes, LDPC codes, LT codes, Raptor codes and space-time coding in detail, in addition to the traditional codes such as cyclic codes, BCH and RS codes and convolutional codes. MIMO communications is a multiple antenna technology, which is an effective method for high-speed or high-reliability wireless communications. PC-based MATLAB m-files for the illustrative examples are included and also provided on the accompanying CD, which will help students and researchers involved in advanced and current concepts in coding theory.

Channel coding, the core of digital communication and data storage, has undergone a major revolution as a result of the rapid growth of mobile and wireless communications. The book is divided into 11 chapters. Assuming no prior knowledge in the field of channel coding, the opening chapters (1 - 2) begin with basic theory and discuss how to improve the performance of wireless communication channels using channel coding. Chapters 3 and 4 introduce Galois fields and present detailed coverage of BCH codes and Reed-Solomon codes. Chapters 5 – 7 introduce the family of convolutional codes, hard and soft-decision Viterbi algorithms, turbo codes, BCJR algorithm for turbo decoding and studies trellis coded modulation (TCM), turbo trellis coded modulation (TTCM), bit-interleaved coded modulation (BICM) as well as iterative BICM (BICM-ID) and compares them under various channel conditions. Chapters 8 and 9 focus on low-density parity-check (LDPC) codes, LT codes and Raptor codes. Chapters 10 and 11 discuss MIMO systems and space-time (ST) coding.

An accessible undergraduate textbook introducing key fundamental principles behind modern communication systems, supported by exercises, software problems and lab exercises.

This conference proceedings focuses on enabling science and mathematics practitioners and citizens to respond to the pressing challenges of global competitiveness and sustainable development by transforming research and teaching of science and mathematics. The proceedings consist of 82 papers presented at the Science and Mathematics International Conference (SMIC) 2018, organised by the Faculty of Mathematics and Natural Sciences, Universitas Negeri Jakarta, Indonesia. The proceedings are organised in four parts: Science, Science Education, Mathematics, and Mathematics Education. The papers contribute to our understanding of important contemporary issues in science, especially nanotechnology, materials and environmental science; science education, in particular, environmental sustainability, STEM and STEAM education, 21st century skills, technology education, and green chemistry; and mathematics and its application in statistics, computer science, and mathematics education.

This practical resource provides you with a comprehensive understanding of error control coding, an essential and widely applied area in modern digital communications. The goal of error control coding is to encode information in such a way that even if the channel (or storage medium) introduces errors, the receiver can correct the errors and recover the original transmitted information. This book includes the most useful modern and classic codes, including block, Reed Solomon, convolutional, turbo, and LDPC codes. You find clear guidance on code construction, decoding algorithms, and error correcting performances. Moreover, this unique book introduces computer simulations integrally to help you master key concepts. Including a companion DVD with MATLAB programs and supported with over 540 equations, this hands-on reference provides you with an in-depth treatment of a wide range of practical implementation issues.

A comprehensive and detailed treatment of the program SIMULINK® that focuses on SIMULINK® for simulations in Digital and Wireless Communications Modeling of Digital Communication Systems Using SIMULINK® introduces the reader to SIMULINK®, an extension of the widely-used MATLAB modeling tool, and the use of SIMULINK® in modeling and simulating digital communication systems, including wireless communication systems. Readers will learn to model a wide selection of digital communications techniques and evaluate their performance for many important channel conditions. Modeling of Digital Communication Systems Using SIMULINK® is organized in two parts. The first addresses Simulink® models of digital communications systems using various modulation, coding, channel conditions and receiver processing techniques. The second part provides a collection of examples, including speech coding, interference cancellation, spread spectrum, adaptive signal processing, Kalman filtering and modulation and coding techniques currently implemented in mobile wireless systems. Covers case examples, progressing from basic to complex Provides applications for mobile communications, satellite communications, and fixed wireless systems that reveal the power of SIMULINK® modeling Includes access to useable SIMULINK® simulations online All models in the text have been updated to R2018a; only problem sets require updating to the latest release by the user.
Covering both the use of SIMULINK® in digital communications and the complex aspects of wireless communication systems, Modeling of Digital Communication Systems Using SIMULINK® is a great resource for both practicing engineers and students with MATLAB experience.

Chapter 1: Fourier Analysis

1.1 CONTINUOUS-TIME FOURIER SERIES (CTFS)

1.2 PROPERTIES OF CTFS

1.3 CONTINUOUS-TIME FOURIER TRANSFORM

1.4 PROPERTIES OF CTFT

1.4.1 Linearity

1.4.2 Conjugation

1.4.3 Real Translation (Time Shifting) and Complex Symmetry

1.5 DISCRETE-TIME FOURIER TRANSFORM (DTFT)

1.6 Sampling

1.7 SAMPLING THEOREM

1.8 POWER, ENERGY, AND CORRELATION

2.1 RANDOM PROCESSES

2.2 LINEAR FILTERING OF A RANDOM SIGNAL

2.3 PSD OF A RANDOM Noise

2.4 FADING EFFECT OF A MULTIPATH CHANNEL

2.5 ANGLE MODULATION (AGM)

2.6 AMPLITUDE MODULATION

2.7 BASEBAND TRANSMISSION

2.8 MATCHED FILTER

2.9 FILTERED WHITE NOISE

2.10 GAUSSIAN NOISE

3.1 AMPLITUDE MODULATION

3.2 ANGLE MODULATION

3.3 CHIRP MODULATION

3.4 FAN (Frequency-Agile Unit) Modulation

4.1 QUANTIZATION

4.2 UNIFORM QUANTIZATION

4.3 NON-UNIFORM QUANTIZATION

4.4 Delta Modulation

5.1 RECEIVER

5.2 SIGNAL PROCESSING

5.3 LINEAR EQUATION-SOLVING

5.4 RANDOM VARIATE GENERATION

6.1 NYQUIST RESPONSE

6.2 RAISED-COSINE RESPONSE

6.3 PARTIAL RESPONSE

6.4 ZERO-FORCING EQUALIZER

6.5 Decision Feedback Equalizer

6.6 MMSE Equalizer

6.7 Adaptive Equalizer

6.8 Zero-Forcing Equalizer

6.9 Decision Feedback Equalizer

7.1 AMPLITUDE SHIFT KEYING

7.2 FREQUENCY SHIFT KEYING

7.3 PHASE SHIFT KEYING